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Abstract. The identification of tridimensional motifs, folding arrangements in
protein structure has been a strenuous task. Recently ab initio protein structure
can be elucidated by computational intelligence algorithms, though it still time
consuming and poses new problems. Until enough protein structures have
been solved, the identification and classification of tridimensional motifs will
remain an arduous task. Therefore, it still important to rely on approaches
that are independent of tridimensional information. A methodology that uses
only the psychochemical properties of amino acid pairing is here described.
This methodology work independently from structural data, maximizing the
physicochemical compatibility among amino acid pairs. Therefore, it is far easier
to implement, and results can be obtained in a shorter time. This approach returns
sequence pairs with high compatibility, which might be part of a protein motif.
These can aid in the identification and classification of protein subsequences.

Keywords: Optimization, motifs, proteins, genetic algorithm,
psychochemical compatibility.

1 Introduction

Proteins are polymers of amino acids joined by a covalent bond known as peptide bond.
Twenty different amino acids are commonly found in proteins, each amino acid has
amino and a carboxyl group as well as a side chain name a radical.

The radical of each amino acid vary in structure, size, charge, and hydropathy which
confer each amino acid of specific properties. A typical protein has between 150 and up
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Fig. 1. This an example of how the search for conserved sequences (SCS) algorithm works. From
a multiple alignment of sequences S, a consensus matrix is acquired C(S) (for reference only
the amino acids that are present in S are shown here), from C(S) a set of conserved sequences
W of variable length are order by decreasing c value.

to a few thousand amino acids, the amino acidic composition of a protein will confer
it of specific structural and functional properties. Interactions among amino acids from
the same protein lead to a specific folding, hence structure and function.

To understand the complexity of protein structure and function, protein’s
tridimensional structure has been further subdivided, motifs being folding arrangement
identifiable as substructures. Therefore, knowing the interprotein interactions among
amino acids that conform motifs can provide important information for a given
protein [2, 7, 9, 10].

Genetic algorithms have extensive applications in optimizing combinatorial
problems [4], the strength of this algorithm reside in its exploration power and
capability to escape from a local optimum. The most important element when trying
to solve an optimization problem with a genetic algorithm is the modelling of the
individual [11], the main points to be considered when dealing with this kind of
algorithms is the design of the objective function, the solution’s modelling, and the
population’s conformation. The use of genetic algorithms in the search for motifs has
already been explored, though this has been made mainly in DNA sequences working
with nucleic acids [5].

The aim of the present is to describe a methodology composed of three stages, which
will allow the user to identify pairs of sequence that are mutually compatible in the
protein sequence, which might be conforming a tridimensional structural motif.
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Algorithm 1 Pseudocode for multiple point mimicry
Input: selected population
Output: cross population

1: cross population is initialized as an empty list
2: for assign i← 1 every second individual until P do
3: if CP is greater than a random number between 0 to 100 then
4: generates four different random numbers between 0 and Lv
5: random numbers are saved in points
6: order the numbers in increasing order
7: assign aux← 1
8: while individuali is equal to individuali+aux do
9: if aux is greater than or equal to P then

10: aux← −1
11: increment the value of aux by one
12: child1 is made up of segments of individuali, individuali+aux, and individuali

defined by the numbers in the even positions of points
13: child2 is made up of segments of individuali+aux, individuali, and

individuali+aux defined by the numbers in the odd positions of points
14: child1 adds to cross population
15: child2 adds to cross population

16: return cross population

2 Methodology

To identify compatible motifs based on amino acid pairing physicochemical properties
a three-phase approach is devised, each with a specific objective. The output will be
a set of highly compatible pair of sequences an its position in a multiple sequence
alignment, these pairs will consist of a highly conserved sequence and a sequence with
high homology to an artificially generated sequence.

2.1 First Stage: Search for Conserved Sequences (SCS)

Objective. Identify a set of highly conserved sequences W in a multiple sequence
alignment S.
Preprocessing. A set of homologue sequences of a protein of interest in a fasta format
file (.faa, .fasta), these will be aligned using Clustal Ω a tool for multiple sequence
alignment [6, 8, 13, 14]. A fasta file with all sequences aligned will be acquired and
afterwards used as input for the first phase of the methodology.
Input data. File in fasta format (.faa, .fasta).
Processing. The file is read, and the alignment’s information is stored in SD•l ={
Si

∣∣i = 1, 2, 3, . . . , D
}

, where D represents the number of sequences, l the length
of the sequences, Si =

(
Si
j

∣∣j = 1, 2, 3, · · · , l
)
ith protein sequence, and jth the

alignment’s column. The consensus matrix C (S) stores the count for each amino
acid by column for each Sj , C (S) =

(
C (S)

1
, C (S)

2
, C (S)

3
, . . . , C (S)

L
)

where

L represents the total length of the alignment, for C (S)
L

=
{
(S)

L
b

∣∣∣b ∈ B
}

B
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Fig. 2. Schematic of the txt file containing the condensed results from the ASG stag. Only the
best artificial coupling sequence is shown for each highly conserved sequence.

represents the amino acids with its one letter code, B = {A,C,D,E, F,G,H, I,K,L,
M,N, P,Q,R, S, T, V,W, Y }.

To obtain highly conserved sequences, the length of the substring is defined as Lv
which must comply with the following conditions a minimum length of 10 Lvm, a
maximum length of 50 LvM , and a conservation value c =

∑m
j=n C (S)

j where n =

Li is any position in the alignment i = 1, 2, . . . , L − Lvm and m = n + Lv. The
subsequence’s length Lv is assigned automatedly using the following approach. Initially
the C (S) matrix is iterated from the first column L until L − Lvm with a window
equal to Lvm, all resulting subsequences are sorted decreasingly in an array according
to its c value.

A subsequence is chosen orderly from this array adding an extra position to the
right of the subsequence according to C (S). The new subsequence must comply to
the criterion ∆c > (5 + (0.02 ∗ Lv)) where ∆c = cLv+x − cLv and x = 1, 2, . . . , 5.
The algorithm continues adding a new position until the criterion is not met or
Lv = LvM . Finally, a set of several subsequences of size W with varying Lv
length and c values will be obtained, order in a decreasing c value fashion where
W = {wi|i = 1, 2, 3, . . . , k} and wi = (wp

i |pi = {Lv}) p is the number of positions
in the sequence wi with a variable Lv length. Some of the sequences from the set W
will be used as input in Subsection 2.2.

Objective Function. c =
∑m

i=n C (S)
i where n = Li is any position in the

alignment i = 1, 2, . . . , L − Lvm and m = n + Lv. Obtain a set of sequences with a
conservation value c.
Output data. A txt file that stores W in descending order with its c value (Fig. 1.)

2.2 Second Stage: Artificial Sequence Generation (ASG)

Objective. Generate an artificial sequence for each sequence from a subset
of W , to obtain a set WA of artificial sequences maximized by its
physicochemical compatibility.
Input Data. W , population size, maximum number of generations, crossover
probability, mutation probability, and the weight for the parameter in the objective
function physicochemical compatibility.
Processing. From W a subset SW = (wi|i = 1, 2, . . . , s) of sequences is retrieved,
where s is the number of sequences to be retrieved from W and s is defined by the user.
The first s sequences from W are retrieved, which will have the best c values.
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Algorithm 2 Pseudocode for biological standard mutation
Input: cross population
Output: mutated population

1: mutated population← cross population
2: can muta generates random number between 1 and P equal to the number of individual to

be mutated
3: these random numbers are saved in ind
4: for each x contained in ind do
5: generate a random number between 1 and Lv
6: save the random number in genome
7: Generate a random number between 0 and 1
8: Save the random number in type
9: if type is in the range [0, 0.6) then

10: mutation by substitution
11: if type is in the range [0.6, 0.8) then
12: mutation by insertion
13: if type is in the range [0.8, 1] then
14: mutation by deletion
15: the mutated individual is deposited in mutated population

16: return mutated population

An artificial will be generated for each sequence in SW , this generation of artificial
sequences is done by a genetic algorithm (GA) [4]. The GA must be initialized with the
following parameters population size P , maximum number of generations G, crossover
probability CP , mutation probability MP , and the weight for the parameter in the
objective function physicochemical compatibility (PCC).

The GA will repeat the following stages selection, crossover, mutation, passing, and
new generation, until the given number of generations previously assigned has been
reached. The objective function to maximize the values of these three physicochemical
properties with the previously assign weights. The values used to evaluate a given
amino acid pair compatibility come from three different matrices: size (SCM ), charge
(CCM ), and hydropathicity (HCM ), these are symmetrical matrices that give a
compatibility value to each amino acid pair [1].

For each sequence wi in SW the GA starts with a population of size P of artificial
sequences of length AL = Lvi where i correspond to i in wi, the sequence composition
is generated randomly from B adding a single amino acid until AL length is reached.
A set of size P sequences known as WA is acquired, each sequence in WA will be
evaluated by the objective function. The selection method can be done by several option
such as tournament, roulette wheel, elitism, truncation, or stochastic universal sampling,
any one can be used though roulette is chosen by default.

Once the individuals have been selected the crossing process is initiated, also here
several option for the crossing can be chosen. The default crossing method is multiple
point mimicry, though multiple point, single point, and uniform crossing methods
can be selected. The multiple point mimicry method allows a pair of individuals to
mimic the composition of the other one, to create two different children with a mixed
composition (Algorithm 1).
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Fig. 3. Example of the results of the SSA phase that will be stored in a txt.

For the mutation method biological standard mutation is the default option, uniform
and standard methods can also be chosen. In the biological standard mutation method,
an amino acid mutation propensity matrix is used, this matrix is built considering all
single nucleotide insertion, deletion, and substitution that each amino acid coding codon
can experiment for each of its three positions. Therefore, each amino acid can only be
replaced by an amino acid whose propensity is higher than zero.

Hence, restricting the sequence to a strict evolutionary path that is biologically sound
(Algorithm 2). Once this stage is over each individual will be tested with the objective
function allowing to make a passing in which all parent sequences will be replace by its
offspring, besides the best individual from the parental sequences will be kept if there
is no offspring sequence with a better value.

These will breed a new generation of solutions each time the cycle is
repeated and on the final generation a population of artificial coupling sequences
WAf = (wai|1, 2, . . . , P ) with high compatibility values will be produced for each of
the highly conserved sequences evaluated wi. This set WAf is saved as txt file and the
best wai from the set is chosen as result and input for 2.3.

Objective Function. PCC = max
(∑AL

j=1 F
(
wLvi

i , waAL
i

))
where F is an

aggregation function of the form F (a, b) = αSCM (a, b) + βCCM (a, b) +
γHCM(a, b) where α, β, γ ∈ [0, 1], α + β + γ = 1, SCM , CCM , and HCM
are compatibility matrices for each pair of amino acids [1].
Output Data. A txt file containing the following information per column wi, wai,
αSCM (wi, wai), βCCM (wi, wai), γHCM (wi, wai), and F (wi, wai) (Fig 2).

2.3 Third Phase: Search for Sequences in the Alignment (SSA)

Objective. Locate the column in S where there is a greater similarity with an wai.
Input Data. The consensus matrix C(S) that is generated in 2.1 and each wai in the
txt output file from 2.2.
Processing. The algorithm starts to iterate over C(S) from 1 to L − ALi in segments
of size ALi for each wai looking for the greatest similarity between a segment of C(S)
and the wai sequence. The position in the alignment Li is deposited in the variable
max homology, every time a better similarity value is encountered the value of Li is
replaced in the variable max homology. Once the iteration over all the length L of
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Table 1. Input parameters for ASG.

Parameter Value
conservation threshold 80
Population size 100
Maximum number of generations 5000
Crossover probability 80 %
Mutation probability 10 %
α 0.2
β 0.4
γ 0.4

C (S) has finished the following information is saved to a txt file wai, Li, and SP i that
is the value given by the objective function called similarity percentage (SP ).

The latter is done for each wai, at the end the txt file will contain the best SP i

values and Li position for each wai.

Objective Function. SP = max
∑ALi

j=1 F2
(
waji , C (S)

j
)

where

F2
(
waji , C (S)

j
)
=

{
C (S)

j
b

∣∣∣b = waji

}
Output Data. A txt file with three columns, in the first one is the artificial sequence, in
the second the column’s position where the highest similarity percentage is found and
in the third the artificial sequence (Fig. 3).

3 Implementation of the Methodology

For the implementation it is first necessary to have a set of proteins of interest, in
this case the dataset cliques 066 batch clique0.faa is used. This dataset is part of a
previous work done by our group; it consists of 66 protein homologues clustered by a
Bidirectional Best Hits methodology (BBH) [3]. The preprocessing of the data to obtain
a multiple sequence alignment is done with Clustal Ω [12].

For the first stage the parameters are the ones described in 2.1, in the second stage it
is necessary to set the parameters (Table 1), while the third stage runs as default. Only
9 sequences from the search for conserved sequences algorithm observed the threshold
defined. Therefore, the genetic algorithm returned 9 highly compatible sequences,
which are searched for similarity segments in the multiple sequence alignment from
the dataset cliques 066 batch clique0.faa (Table 2).

4 Conclusions and Future Work

There is certainty in that the methodology works correctly since the experiments are run
several times and the same artificial sequences are found. These artificial sequences had
a percentage of compatibility greater than 70%. The weights of α, β, and γ influence
greatly the performance of the psychochemical compatibility objective function since
each of the parameters from the objective function are mutually exclusive.
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Table 2. Results for each stage.
SCS ASG SSA

wi Lv ci wai PCCi Li SPi

KWPWYVWLLI 10 84.706 DAPAGVAVVI 72.993 1773 31.176
NECVKSQSSRYGFCG 15 83.922 NKGVDSKSSDGGVGG 75.188 1747 36.176
QVDRLITGRLAAL 13 83.823 KVKDVISGDVAAV 75.307 1518 28.959
ECVKSQSSRYGFCGN 15 82.843 KGVDSKSSDGGVGGN 75.188 1748 35.098
YIKWPWYVWLL 11 82.62 GIDAPAGVAVV 72.812 1771 28.877
KVNECVKSQSSR 12 82.23 DVNKGVDSKSSD 75.431 1745 35.049
IEDLLFDKVVT 11 81.684 IKKVVVKDVVS 75.691 1516 26.203
DRLITGRLAALNAFV 15 81.274 KDVISGDVAAVNAVV 75.327 1711 35.196
IKWPWYVWLLI 11 81.15 IDAPAGVAVVI 73.01 1704 29.278

Finding artificial sequence with high compatibility and its subsequent similarity to
segments of a protein homologue family can allows us to identify regions of interprotein
interaction that might be important for protein function or structure.

The time it takes for the algorithm to run through all stages and return the final
output is considerable low, in the order of just a few minutes. Moreover, each stage of
the algorithm can be used separately if needed or applied to a different methodology
with a separate goal.

4.1 Future Work

Improve the performance of each of the stages to reduce the time taken for the
methodology to runs as an all. Explore different options of metaheuristic in the search
for highly compatible artificial sequences. Generate a multi-objective paradigm, where
each compatibility matrix is separate objective, thus obtaining a set of non-dominated
solutions instead of just one with the current aggregation function.
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